CONTRIBUTION A L'ETUDE DES SYSTEMES Ca₃(PO₄)₂-MSO₄ (M= Sr, Ba)

S. Chabchoub et M. Dogguy

INSTITUT NATIONAL DE RECHERCHE SCIENTIFIQUE ET TECHNIQUE, CENTRE DE CHIMIE APPLIQUEE, BORJ-CEDRIA, BP 95, HAMMAM-LIF, TUNISIE

(Reçu le 14 Mai, 1992)

In the systems $Ca_3(PO_4)_2$ -MSO₄ (M = Sr, Ba), the series of single phase $Ca_{21-3x}M_{2x}(PO_4)_{14-2x}(SO_4)_{2x}$ with 0 < x < 0.15 for M = Sr and 0 < x < 0.1 for M = Ba have been prepared. These solid solutions, respectively strontium phosphosulfate and barium phosphosulfate, are isostructural with anhydrous tricalcium orthophosphate. They have been characterized by their infrared spectra and their crystallographic unit cell parameters.

Keywords: solid solutions, systems Ca3(PO4)2-MSO4 (M= Sr, Ba)

Introduction

Le phosphate tricalcique anhydre pur $\beta Ca_3(PO_4)_2$ ou βTCP n'existe pas à l'état naturel mais peut être synthétisé au laboratoire. Il a fait l'objet de nombreux travaux qui concernent essentiellement la substitution des ions Ca²⁺ par les ions Mg²⁺, Ni²⁺, Co²⁺, Fe²⁺, Cd²⁺ [1-5]. En revanche, la substitution des PO₄³⁻ n'a intéressé qu'un nombre relativement restreint de chercheurs.

En effet, Nurs *et al.* [6] ont mis en évidence une solution solide de substitution de PO_4^{3-} par SiO_4⁴⁻ de très faible étendue ne dépassant pas 2% en nombre d'ions. D'autre part, Jarcho *et al.* [7] ont signalé la synthèse d'une céramique monophasée à base de phosphate tricalcique obtenue par réaction entre le sulfate d'ammonium et le β TCP. La solution solide ainsi obtenue de structure β TCP présente de bonnes propriétés mécaniques. De notre côté, nous avons publié une étude sur le système Ca₃(PO₄)₂-CaSO₄-CaO [8] dans lequel une solution solide de CaSO₄ dans Ca₃(PO₄)₂ a été mise en évidence. Il est à noter que Marraha *et al.*

John Wiley & Sons, Limited, Chichester Akadémiai Kiadó, Budapest [9] ont déjà signalé et étudié cette solution solide. Ils ont montré que le taux de substitution est de l'ordre de 16,7% (rapport $n=nSO_4/nPO_4^{3-}$.

Nous nous proposons d'étudier les systèmes:

Ca₃(PO₄)₂-SrSO₄ et Ca₃(PO₄)₂-BaSO₄

afin de voir l'influence de la substitution éventuelle à la fois cationique et anionique sur les propriétés physico chimiques.

II-Matériels et méthodes d'études

Le phosphate tricalcique β TCP a été préparé soit par précipitation, en milieu aqueux, d'un phosphate apatitique puis calcination à 900°C [10], soit par calcination à 900°C d'un mélange de CaCO₃ et de (NH₄)₂HPO₄. Les échantillons obtenus par ces deux méthodes ont conduit à des résultats comparables. Le phosphate de strontium et le phosphate de baryum sont calcinés à 900°C (produits Merck).

Nous avons préparé des mélanges de différentes compositions de phosphate tricalcique et de sulfate de strontium ou de baryum. Après un traitement à 1000°C à l'air pendant 12 heures, les solides obtenus ont été étudiés par spectroscopie IR (Perkin Elmer), diffraction des rayons X (appareils Philips), ATD-ATG couplées (Setaram) et mesure de la masse volumique (flottation).

Nous n'avons noté aucune perte en poids entre la température ambiante et 1000°C.

Dans la suite de ce travail, les compositions seront exprimées par $n = nSO_4^2/nPO_4^3$ ou nSO_4^2 et nPO_4^3 représentent le nombre d'ions présents de chaque espèce.

Résultats et interprétation

Spectroscopie IR

Système Ca₃(PO₄)₂-SrSO₄

Les spectres IR des différents échantillons chauffés sont présentés sur la Fig. 1. Le Tableau 1 rassemble les fréquences observées dans le domaine compris entre 1300 et 200 cm⁻¹. L'examen de ces spectres permet de faire les remarques suivantes:

1) Les bandes attribuées au PO_4^{3-} sont moins bien résolues dans le cas des mélanges calcinés que dans le β TCP pur. De même, quand *n* augmente, on ob-

J. Thermal Anal., 39, 1993

serve une diminution de l'intensité des bandes à 965 et 940 cm⁻¹ attribuées à β TCP [11].

2) Les bandes à 579 et 575 cm⁻¹ dues au PO_4^{3-} de β TCP disparaissent et apparaît un épaulement à 585 cm⁻¹ dont l'intensité augmente progressivement quand *n* augmente.

3) L'intensité des bandes à 550 et 570 cm⁻¹ diminue par rapport à celle de la bande 600 cm⁻¹. En même temps la bande 545 cm⁻¹ devient plus intense que celle à 550 cm⁻¹.

Fig. 1 Spectres d'absorption infrarouge de quelques mélanges du système Ca3(PO4)2-BaSO4

4) Les bandes 435 et 415 cm⁻¹ diminuent d'intensité alors que celle à 285 cm⁻¹ disparaît à partir de n=0,15.

5) Les épaulements observés à 1170 et 1205 cm⁻¹ voient leur intensité augmenter avec n.

6) Enfin pour les échantillons dont n est supérieur à 0,15, outre les bandes déjà signalées nous observons celles de SrSO₄ [11].

SrSO4		βТСР			Mélanges		
Lit*	Obs**	Lit*	Obs**	n=0,05	n=0,10	n=0,10	n=0,20
			415	415	415	415	
			435	435	435	435	
			545	545	548	548	548
		550	550	550	550		
		570	570	570			
			575				
			579	579			
		590	590	590	585	585	585
		605	600	600	600	600	600
610	608						608
640	640						630
		948	940	940			
		975	970	970			
995	990						990
		1010	1015		1000		1025
		1043	1040	1040	1035		
			1072				
	1075						
1080		1094	1099				1080
		1104					
		1125	1115	1125			
1150	1135				1130	1120	1120
1200	1190				1170	1170	1170
1250	1240				1205	1205	1205

Tableau 1 Position des bandes infrarouge (cm⁻¹) des mélanges du système β TCP-SrSO₄

*Lit: Littérature; **Obs: Observées.

Système Ca₃(PO₄)₂-BaSO₄

La Figure 2 rassemble les spectres IR de certains échantillons. Les données relatives à ces spectres sont consignées dans le Tableau 2. Les spectres montrent, comme dans le cas du système précédent:

1) une mauvaise résolution des bandes PO_4^{3-} .

2) L'apparition des épaulements à 1170 et 1205 cm⁻¹. Leur intensité augmente quand n augmente.

Par contre nous assistons dans ce système à:

3) un déplacement de la bande 570 cm⁻¹ jusqu'à 565 cm⁻¹ avec une augmentation de son intensité quand *n* passe approximativement de n=0 à n=0.1.

Fig. 2 Spectres d'absorption infrarouge de quelques mélanges du système Ca3(PO4)2-SrSO4

BaSO4		βī	СР	Mélanges		
Lit*	Obs**	Lit*	Obs**	n=0,05	n=0,10	n=0,20
			415	415	415	
			435	435	435	435
			545			
		550	550			550
		570	570		565	
		605	600			
610	610					610
640	632					
		948	940	940	945	945
		975	970			970
985	980				990	990
		1010	1015		1010	
1075	1080					1080
		1043	1040		1040	
			1072			
		1094	1099			
		1104				
			1115			
1120	1120					1120
		1125				
	1185				1170	1170
1200					1205	1205
					1270	
1300						

Tableau 2 Position des bandes infrarouge (cm⁻¹) des mélanges du système βTCr-BaSO4

*Lit: Littérature; **Obs: Observées.

4) Les bandes à 435 et 415 cm^{-1} deviennent plus résolues avec une augmentation sensible de l'intensité de la première.

5) Les bandes relatives à BaSO₄ (11) apparaissent quand n>0,10.

Etude par diffraction des rayons X

La diffraction des RX des échantillons calcinés montre la présence d'une seule phase de structure β TCP quand les valeurs de *n* sont comprises entre 0 et 0,15 dans le cas du système Ca₃(PO₄)₂-SrSO₄ alors qu'elles sont comprises entre 0 et 0,10 approximativement dans le système Ca₃(PO₄)₂-BaSO₄.

Au delà de ces intervalles, les domaines deviennent diphasés (Fig. 3). Pour les deux systèmes les diffractogrammes mettent en évidence une inversion de l'intensité des deux raies (202) et (204) de la phase β TCP.

Les Tableaux 3 et 4 donnent respectivement les diffractogrammes des termes des solutions solides

 $Ca_{21-3x}Sr_{2x\square 3+x}(PO_4)_{14-2x}(SO_4)_{2x-2}$

$$Ca_{21-3x}Ba_{2x} \square _{3+x}(PO_4)_{14-2x}(SO_4)_{2x-2}$$

Fig. 3 Diagrammes de diffraction des rayons X de quelques mélanges du système \BTCP-SrSO4

J. Thermal Anal., 39, 1993

Fig. 4 Diagrammes de diffraction des rayons X de quelques mélanges du système β TCP-BaSO4

Le Tableau 5 rassemble les valeurs des paramètres $a_{\rm H}$ et $c_{\rm H}$ dans les deux systèmes en fonction de la composition des échantillons.

Nous remarquons que pour le système Ca₃(PO₄)₂-SrSO₄ le paramètre $a_{\rm H}$ croît rapidement quand *n* varie de 0 à 0,15. A *n*=0.05, le paramètre $c_{\rm H}$ prend la valeur 37,40 Å puis ne varie pratiquement pas. Alors que dans le système Ca₃(PO₄)₂-BaSO₄ ces paramètres varient d'une manière similaire mais dans un domaine plus restreint. $c_{\rm H}$ se fixe à 37,42 Å.

366

				di	nkl	
h	k	1	n=0,00	n=0,05	<i>n</i> =0,10	<i>n=</i> 0,15
0	1	2	8,1406	8,1609	8,1631	8,1728
1	0	4	6,5003	6,5146	6,5171	6,5213
1	1	0	5,2205	5,2345	5,2355	5,2435
2	0	2	4,3945	4,4060	4,4069	5,2435
0	2	4	4,0703	4,0804	4,0815	4,0864
1	0	10	3,4563	3,4627	3,4645	3,4645
2	1	1	3,4034	3,4125	3,4132	3,4183
1	2	2	3,3619	3,3708	3,3715	3,3765
2	1	4	3,2100	3,2181	3,2189	3,2231
3	0	0	3,0140	3,0221	3,0227	3,0273
0	2	10	2,8820	2,8880	2,8825	2,8905
2	1	8	2,7591	2,7655	2,7664	2,7689
3	0	6	2,7135	2,7203	2,7210	2,7242
2	2	0	2,6103	2,6172	2,6177	2,6217
2	1	10	2,5231	2,5286	2,5296	2,5314
2	2	6	2,4077	2,4138	2,4144	2,4174
4	0	4	2,1972	2,2030	2,2034	2,2066
3	2	1	2,0712	2,0767	2,0771	2,0803
0	4	8	2.0352	2.0402	2.0413	2.0432

Tableau 3 Diffractogrammes des termes de la solution solide Ca21-3xSr2xD3+x(PO4)14-2x(SO4)2xD2

Mesure de la masse volumique

Les masses volumiques ont été déterminées par la méthode hydrostatique. Le liquide picnométrique est constitué d'un mélange de diiodométhane et de benzène. Les mesures ont été effectuées à 20°C, les valeurs des masses volumiques sont consignées dans le Tableau 6.

ATD-ATG couplées

Les différents échantillons ont été étudiés par ATD-ATG couplées. Nous n'avons observé aucune perte de masse jusqu'à 1100°C.

				$d_{ m hkl}$	
h	k	1	<i>n</i> =0,00	<i>n</i> =0,05	n=0,10
0	1	2	8,1406	8,1561	8,1631
1	0	4	6,5003	6,5135	6,5171
1	1	0	5,2205	5,2300	5,2355
2	0	2	4,3945	4,4026	4,4069
0	2	4	4,0703	4,0780	4,0815
1	0	10	3,4563	3,4640	4,4645
2	1	1	3,4034	3,4096	3,4132
1	2	2	3,3619	3,3681	3,3715
2	1	4	3,2100	3,2159	3,2189
3	0	0	3,0140	3,0195	3,0227
0	2	10	2,8820	2,8880	2,8892
2	1	8	2,7591	2,7645	2,7664
3	0	6	2,7135	2,7187	2,7210
2	2	0	2,6103	2,6150	2,6177
2	1	10	2,5231	2,5281	2,5296
2	2	6	2,4077	2,4122	2,4144
4	0	4	2,1972	2,2013	2,2034
3	2	1	2,0712	2,0750	2,0771
0	4	8	2,0352	2,0390	2,0407

Tableau 4 Diffractogrammes des termes de la solution solide Ca21-3xBa2xTB+x(PO4)14-2x(SO4)2xTb

Tableau 5 Les paramètres a_H et c_H de la phase β TCP dans le système

(1) - Ca₃(PO₄)₂-SrSO₄ et

(2) - Ca₃(PO₄)₂-BaSO₄ en fonction de la composition

Paramètre	Composition			
	n=0,00	n=0,05	<i>n</i> =0,10	<i>n</i> =0,15
<i>a</i> H / Å	10,441 [2]	10,469 [3]	10,475 [2]	10,487 [2]
<i>с</i> ң / Å	37,405 [9]	37,480 [5]	37,480 [7]	37,480 [6]
~				
<i>а</i> н / Å	10,441 [3]	10,460 [2]	10,471 [3]	
<i>с</i> н / Å	37,405 [5]	37,490 [5]	37,490 [4]	
	Рагатètre	Paramètre n=0,00 ан / Å 10,441 [2] сн / Å 37,405 [9] ан / Å 10,441 [3] сн / Å 37,405 [5]	Paramètre Comp. $n=0,00$ $n=0,05$ $\sigma_{\rm H}$ / Å 10,441 [2] 10,469 [3] $c_{\rm H}$ / Å 37,405 [9] 37,480 [5] $a_{\rm H}$ / Å 10,441 [3] 10,460 [2] $c_{\rm H}$ / Å 37,405 [5] 37,490 [5]	Paramètre Composition $n=0,00$ $n=0,05$ $n=0,10$ $\sigma_{\rm H}$ / Å 10,441 [2] 10,469 [3] 10,475 [2] $c_{\rm H}$ / Å 37,405 [9] 37,480 [5] 37,480 [7] $\sigma_{\rm H}$ / Å 10,441 [3] 10,460 [2] 10,471 [3] $c_{\rm H}$ / Å 37,405 [5] 37,490 [5] 37,490 [4]

Système	Composition	Formules proposées	ρ / g/cm ³ expérimentale ±0,005 g/cm ³	ρ / g/cm ³ théorique
βTCPSrSO4	n=0,05	Ca20,00Sr0,67(PO4)13,34(SO4)0,67	3,068	3,069
	<i>n</i> =0,10	Ca19,09Sr1,27(PO4)12,73(SO4)1,27	3,089	3,088
	<i>n</i> =0,15	Ca18,26Sr1,83(PO4)12,17(SO4)1,80	3,103	3,104
βTCP-BaSO4	<i>n</i> =0,05	Ca20,00Ba0,67(PO4)13,34(SO4)0,60	3,119	3,121
	<i>n</i> =0,10	Ca19,01Ba1,27(PO4)12,73(SO4)1,20	3,179	3,178

Tableau 6 Variation de la mass	e volumique de la phase BTCP en fonction de la composition
(cas de la substitutio	on)

Tableau 7 Variation de la masse volumique de la phase βTCP en fonction de la composition (cas de l'insertion)

Système	Composition	Formules proposées	ρ / g/cm ³ expérimentale ±0,005 g/cm ³	ρ / g/cm ³ théorique
βTCP–SrSO ₄	n=0,05	Ca21Sr0,33(PO4)14(SO4)0,33	3,068	3,126
	<i>n</i> =0,10	Ca21Sr0,64(PO4)14(SO4)0,64	3,088	3,202
	<i>n</i> =0,15	Ca ₂₁ Sr _{0,91} (PO ₄) ₁₄ (SO ₄) _{0,91}	3,104	3,264
βTCP–BaSO4	n=0,05	Ca21Ba0,33(PO4)14(SO4)0,33	3,120	3,154
	<i>n</i> =0,10	Ca ₂₁ Ba _{0,63} (PO ₄) ₁₄ (SO ₄) _{0,63}	3,179	3,248

Discussion et interprétation

La diffraction des rayons X indique la présence d'un domaine monophasé de structure β TCP dont l'étendue est limitée à n = 0,10 dans le système Ca₃(PO₄)₂-BaSO₄ mais elle atteint n = 0,15 dans le système Ca₃(PO₄)₂-SrSO₄. Dans les mêmes conditions et dans les deux systèmes, les paramètres cristallographiques $a_{\rm H}$ et $c_{\rm H}$ varient simultanément, ainsi que la masse volumique, d'autre part les bandes à 640 et 635 cm⁻¹ qui correspondent respectivement à SrSO₄ et BaSO₄ n'apparaissent pas dans les spectres des échantillons des domaines monophasés. L'ensemble de ces résultats montrent que les ions sulfates et les ions Sr²⁺ et Ba²⁺ se trouvent bien en solution solide dans le réseau de la phase β TCP.

Les bandes situées à 1205 et 1170 cm⁻¹ peuvent être attribuées aux ions sulfates incorporés dans le réseau β TCP comme c'était proposé par Marrah *et al.* [9] dans leur étude du système Ca₃(PO₄)₂-CaSO₄. De même l'absence des bandes bien caractéristiques de β TCP, en particulier celles situées à 974 et 948 cm⁻¹, montre l'existence de perturbation à courte distance dans le réseau. Nous savons par ailleurs que la structure de β TCP dérive de celle de composés isotypes tel que Ba₃(VO₄)₂ [12]. Cette structure est lacunaire. Mackay [13] a remarqué l'incompatibilité du groupe d'espace avec le nombre impair (z=7) d'unités formulaires Ca₃(PO₄)₂ par maille, une maille de β TCP a pour formule:

Deux mécanismes peuvent être envisagés pour expliquer la formation de ces solutions solides.

1) Solution solide par insertion des Sr^{2+} et SO_4^{2-} ou Ba^{2+} et SO_4^{2-} dans les lacunes de la phase de β TCP.

2) Solution solide par substitution des ions Ca^{2+} par Sr^{2+} ou Ba^{2+} et PO_4^{3-} par SO_4^{2-} avec formation des lacunes cationiques, pour compenser l'équilibre des charges.

Selon le premier mécanisme, la solution solide peut être représentée par la formule:

Ca₂₁M_x
$$\square_{3-x}(PO_4)_{14}(SO_4)_x\square_{2-x}$$

(M: Sr²⁺, Ba²⁺; 0

alors que dans le cas de la substitution, il y aurait création des lacunes cationiques, on peut proposer alors la formule générale suivante:

 $Ca_{21-3x}M_{2x}\Box_{3+x}(PO_4)_{14-2x}(SO_4)_{2x}\Box_2$

Les valeurs des masses volumiques trouvées expérimentalement sont beaucoup plus proches des valeurs théoriques trouvées dans le cas du mécanisme de substitution (Tableaux 4 et 5). Des études récentes (2-5, 9) ont montré que seuls les sites cationiques Ca(4), Ca(5) et les sites anioniques P(1)O₄ peuvent être l'objet de substitution. Ainsi, la valeur maximale de *n* atteinte dans le système Ca₃(PO₄)₂-CaSO₄ est égale à 0,167 et elle correspond à la formule Ca₂₀(PO₄)₁₂(SO₄)₂. Dans notre cas cette valeur n'est pas atteinte. Il est probable que le volume des ions Sr²⁺ (r=1,13 Å) et Ba²⁺ (r=1,35 Å) en est la cause. Des études de RPE sont entreprises pour confirmer ces hypothèses.

References

- 1 A. G. Nord, N. 2b. Miner. Mh. H. 11, (1983) 4898.
- 2 S. S. Romdhane, A. Legrouri, J. Lenzi, G. Bonel et M. Lenzi, Rev. Chim. Minérale, 21 (1984) 229.
- 3 L. W. Schroeder, B. Dickens et W. E. Brown, J. Solid State Chem., 22 (1977) 253.

- 4 J. Ando, Bull. Chim. Soc. Jap., 31 (1958) 201.
- 5 D. Clement, J. M. Tristan, M. Hamad, P. Roux et J. C. Heughebaert, J. Solid. State Chem., 78 (1989) 271.
- 6 R. W. Nurse, J. H. Whelch et W. Gutt, J. Chem. Soc., (1989) 1080.
- 7 M. Jarcho, R. L. Salsbury, M. B. Thomas et R. H. Doremus, J. Mater Sci., 14 (1979) 142.
- 8 S. Chabchoub, M. Dogguy et J. C. Heughebaert, Thermochim. Acta, 120 (1987) 143.
- 9 M. Marrah et J. C. Heughebaert, Phosphorus, Sulfur and Silicon, 44 (1989) 172.
- 10 J. C. Heughbebaert et G. Montel, Bull. Soc. Chim. Fr., 8-9 (1970) 2923.
- 11 R. A. Bnyquist et R. O. Kagel, Infrared Spectra of Inorganic (3800-45 cm⁻¹) ed. Academic Press, 1971.

Zusammenfassung — Im System Ca₃(PO₄)₂-MSO₄ (M=Sr,Ba) wurde eine Reihe von Einfachphasen Ca_{21-3x}M_{2x}(PO₄)_{14-2x}(SO₄)_{2x} mit 0 für M=Sr und mit 0 für M=Ba hergestellt. Diese Mischkristalle, d.h. Strontiumphosphosulfat und Bariumphosphosulfat haben die gleiche Struktur wie wasserfreies Tricalciumorthophosphat. Sie wurden mit Hilfe ihrer IR-Spektren und ihrer kristallografischen Zellenparameter charakterisiert.